This page provides you with instructions on how to extract data from Heroku and load it into Snowflake. (If this manual process sounds onerous, check out Stitch, which can do all the heavy lifting for you in just a few clicks.)
What is Heroku?
Heroku is a cloud platform that lets companies build, deploy, monitor, and scale apps.
What is Snowflake?
Snowflake is a cloud-based data warehouse that's fast, flexible, and easy to work with. It runs on Amazon Web Services EC2 and S3 instances, and separates compute and storage resources, enabling users to scale the two independently and pay only for resources used. Snowflake can natively load and optimize both structured and semi-structured data and make it available via SQL. It provides native support for JSON, Avro, XML, and Parquet data, and can provide access to the same data for multiple workgroups or workloads simultaneously with no contention roadblocks or performance degradation.
Getting data out of Heroku
You can extract the data you want from Heroku's servers using the Heroku API. A common use case for extracting Heroku data is retrieving server logs or other event logs. There are some API endpoints related to logs, as well as command-line tools like the logs command that let you retrieve this data.
Sample Heroku data
Here's an example set of commands and responses you might see when interacting with the logs
command-line tool.
$ heroku logs --ps router 2012-02-07T09:43:06.123456+00:00 heroku[router]: at=info method=GET path="/stylesheets/dev-center/library.css" host=devcenter.heroku.com fwd="204.204.204.204" dyno=web.5 connect=1ms service=18ms status=200 bytes=13 2012-02-07T09:43:06.123456+00:00 heroku[router]: at=info method=GET path="/articles/bundler" host=devcenter.heroku.com fwd="204.204.204.204" dyno=web.6 connect=1ms service=18ms status=200 bytes=20375 $ heroku logs --source app 2012-02-07T09:45:47.123456+00:00 app[web.1]: Rendered shared/_search.html.erb (1.0ms) 2012-02-07T09:45:47.123456+00:00 app[web.1]: Completed 200 OK in 83ms (Views: 48.7ms | ActiveRecord: 32.2ms) 2012-02-07T09:45:47.123456+00:00 app[worker.1]: [Worker(host:465cf64e-61c8-46d3-b480-362bfd4ecff9 pid:1)] 1 jobs processed at 23.0330 j/s, 0 failed ... 2012-02-07T09:46:01.123456+00:00 app[web.6]: Started GET "/articles/buildpacks" for 4.1.81.209 at 2012-02-07 09:46:01 +0000 $ heroku logs --source app --ps worker 2012-02-07T09:47:59.123456+00:00 app[worker.1]: [Worker(host:260cf64e-61c8-46d3-b480-362bfd4ecff9 pid:1)] Article#record_view_without_delay completed after 0.0221 2012-02-07T09:47:59.123456+00:00 app[worker.1]: [Worker(host:260cf64e-61c8-46d3-b480-362bfd4ecff9 pid:1)] 5 jobs processed at 31.6842 j/s, 0 failed ...
Preparing data for Snowflake
You may need to prepare your data before loading it. Check Snowflake's supported data types and make sure that your data maps neatly to them.
Note that you won't need to define a schema in advance when loading JSON or XML data into Snowflake.
Preparing Heroku data
This part could be the trickiest: you need to map the data that comes out of each Heroku API endpoint or log extraction into a schema that can be inserted into your destination database. This means that, for each value in the response, you need to identify a predefined datatype (i.e. INTEGER, DATETIME, etc.) and build a table that can receive them. Depending on your log files, you may also opt to break those up into raw logs and more meaningful metadata or log portions.
The Heroku API documentation can give you a good sense of what fields will be provided by each endpoint, along with their corresponding datatypes.
Loading data into Snowflake
Snowflake's documentation outlines a Data Loading Overview that can lead you through the task of loading your data. If you're not loading a lot of data, Snowflake's data loading wizard may be helpful, but for many organizations, its limitations make it unacceptable. Instead, you can:
- Use the PUT command to stage files.
- Use the COPY INTO table command to load prepared data into an awaiting table.
You can copy data from your local drive or from Amazon S3. Snowflake lets you make a virtual warehouse that can power the insertion process.
Keeping Heroku data up to date
At this point you've coded up a script or written a program to get the data you want and successfully moved it into your data warehouse. But how will you load new or updated data? It's not a good idea to replicate all of your data each time you have updated records. That process would be painfully slow and resource-intensive.
Instead, identify key fields that your script can use to bookmark its progression through the data and use to pick up where it left off as it looks for updated data. Auto-incrementing fields such as updated_at or created_at work best for this. When you've built in this functionality, you can set up your script as a cron job or continuous loop to get new data as it appears in Heroku.
And remember, as with any code, once you write it, you have to maintain it. If Heroku modifies its API, or the API sends a field with a datatype your code doesn't recognize, you may have to modify the script. If your users want slightly different information, you definitely will have to.
Other data warehouse options
Snowflake is great, but sometimes you need to optimize for different things when you're choosing a data warehouse. Some folks choose to go with Amazon Redshift, Google BigQuery, PostgreSQL, or Microsoft Azure Synapse Analytics, which are RDBMSes that use similar SQL syntax, or Panoply, which works with Redshift instances. Others choose a data lake, like Amazon S3 or Delta Lake on Databricks. If you're interested in seeing the relevant steps for loading data into one of these platforms, check out To Redshift, To BigQuery, To Postgres, To Panoply, To Azure Synapse Analytics, To S3, and To Delta Lake.
Easier and faster alternatives
If all this sounds a bit overwhelming, don’t be alarmed. If you have all the skills necessary to go through this process, chances are building and maintaining a script like this isn’t a very high-leverage use of your time.
Thankfully, products like Stitch were built to move data from Heroku to Snowflake automatically. With just a few clicks, Stitch starts extracting your Heroku data, structuring it in a way that's optimized for analysis, and inserting that data into your Snowflake data warehouse.